APES – Chapter 8 – Earth Systems

Intro: Are Hybrid Electric Vehicles as Environmentally Friendly as We Think?

- a) what are the environmental trade-offs we make with HEV technology?
- b) what rare metals are used and where do they come from?
- c) what are the impacts of extraction and processing these materials?

I. Resource availability tied to Earth's formation

A. Basic geological structure of the Earth (see figs. 8.1 and 8.2, p. 208, 209)

II. Dynamic Earth

A. Plate Tectonics Theory – Geology's Big Idea

Be familiar with the theory, how it works, what phenomena it describes... as well as the evidence that has been discovered that support the theory... (see pp. 210 – 217)

B. Environmental and Human Toll of Earthquakes and Volcanoes

List the many environmental consequences of these phenomena:

III. The Rock Cycle (see fig. 8.15, p. 218)

Be able to describe all processes involved in this cycle, as well as the conditions underwhich each specific type of rock forms:

A. Igneous Rocks

- 1. Intrusive rocks
- 2. Extrusive rocks

B. Sedimentary Rocks

C. Metamorphic Rocks

IV. **Soil –** The link between rock cycle and biosphere

What is soil?

What ecosystem services are provided by soil? (see fig. 8.19, p. 221)

A. Soil Formation – 5 basic factors are involved: (see fig. 8.2, p. 222)

- 1. Parent Material
- 2. Climate
- 3. Topography
- 4. Organisms (biotic activity)
- 5. Time
- B. Soil Structure Soil Horizons

(see fig. 8.21, p. 223) Be able to describe the vertical structure/properties.

0 Horizon

A Horizon

E Horizon (in certain soils)

B Horizon

C Horizon

Unweather Parent Material

C. Properties of Soil (see figs. 8.22, 8.23, 8.24 on pages 224-225)

1. Physical properties

Texture as a proportion of sand, silt and clay Porosity as a result of grain texture Soil drainage (permeability) is an important characteristic

2. Chemical properties

Cation Exchange Capacity (CEC)...what is it, and how is it important? Importance of clay – Importance of soil pH – Soil bases – Ca, Mg, K, Na ions and compounds Soil acids – H, Al, S ions and compounds Plant nutrients – N, P, K

3. **Biological properties** – know the roles/importance of:

Fungi – Bacteria – Protozoans – Detritivores – Herbivores – Foragers and GrazersD. Soil Degradation and Erosion – how does soil get damaged?

V. Mineral Resources – Distribution, Extraction and the Environment

A. Abundance and Distribution (see fig. 8.26, p. 226) and Table 8.1, p. 227

Ores

Metals

Disseminated deposits

Reserves

B. Types of Mining - Extraction methods: (see figs. 8.27 and Table 8.2)1. Surface mining can be done in several ways:

Strip mining

Open Pit mining

Mountaintop removal

Placer mining

- 2. Subsurface mining
- **C. The Problems of Mining:** Dealing with Spoils / Tailings

Acid Mine Drainage

Heavy metals and other Hazardous materials

Air pollution

Safety issues

D. **Important Mining Legislation** (Provisions, Protections, Problems) The Mining Law of 1872 (The General Mining Act)

Surface Mining Control and Reclamation Act (1977)

WORKING TOWARD SUSTAINABILITY

Mine Reclamation and Biodiversity (p. 229-230)

a) how is a mine reclaimed? What steps are critical to successful reclamation?